

CTT Timer

Repeat Cycle Timer Setup

The repeat timer comes with factory setting of:

15.0 seconds total (Set 1)
10.0 seconds off (Set 2)
5.0 seconds on

To change the time up or down, please follow the following instructions:

1. Turn on unit.
2. Press the Gold button (<<). The first number will start to blink for *Set 1* (total time).
3. To change the setting of this number, use the Gray up button (^) or the Gray down button (v) to increase or decrease the value.
4. To continue to the next number press the Gold button (<<) again and repeat step 3.
5. To return to a previous number, keep pressing the Gold button (<<) and it will cycle back around to the first number.
6. Once the required time is achieved, press the Blue button (MODE). This will save your changes.
7. Press the Blue button (MODE) again and *Set 2* will appear on the display at the bottom. Repeat steps 2 through 6 to set the OFF time.

Example:

Set 1 = 10.0 (Total Time for Cycle)
Set 2 = 2.0 (Time Off for Cycle)
8.0 (Time On for Cycle)

8. Leaving Set 2 at 0.0 will set the cycle at 10.0 On and 10.0 Off.

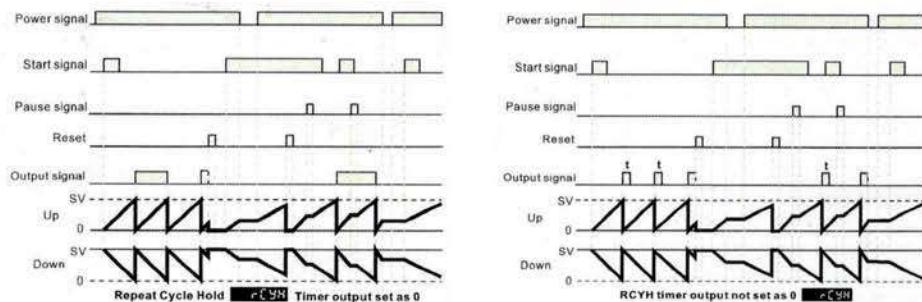
CTT Timer

Repeat Cycle Hold

Repeat Cycle HOLD (rCYH)

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period setting value SV (timing up or down based on parameter (Up/Down)). At the end of the timing period, the timing period will reset and repeat automatically.

If the output pulse width parameter (PulseW) is set to 0, both outputs will turn ON at the end of the first timing period, turn OFF at the end of the next timing period, turn ON at the end of the next timing period, etc.


If the output pulse width parameter (PulseW) is set to >0.00, both outputs will turn ON momentarily for the time set in the output pulse width parameter (PulseW) at the beginning of the each timing period.

The trailing edge of the "start" signal has no effect on the outputs or timing period.

The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter (RstS). The leading edge of a new "start" signal is necessary to restart the cycle.

The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.

When power is removed, both outputs will turn OFF. The last state of the outputs and the last value of the current timing period will be "stored" in Eeprom when power is removed. When power is reapplied the outputs will return to their last state and timing will resume from the last value of the timing period by the leading edge of a new "start" signal.

Keypad set up of the parameters for Repeat Cycle Hold Timing:

To enter the page for parameter setting of the timer, press **MODE** in the main menu for more than 3 seconds. After the setup is complete, press **MODE** for more than 3 seconds under any of the parameter page you are in and return to the main menu.

Select functions: There are 4 modes in CTT, (left to right) timer, counter, tachometer and timer + counter.

MODE ↓ Select timer mode: timing up and timing down

MODE ↓ Select output modes: There are 12 output modes in the timer. The user can choose the mode that best meets the demand.

MODE ↓ Select display unit: the min. unit 10ms to the max. unit hour are selectable. Refer to table below.

MODE ↓ Select pulse width of output 1: The default output time is 0.02 second. When the parameter is set to 0.00 second, the output status will be maintained on.

MODE ↓ Select min. width of reset signal: The default value is 20ms; can be set to 1ms.

MODE ↓ Select input signal types: NPN and PNP (use NPN if dry contact input)

[Back to Top](#)

Setting Time Units

<i>t Unit</i>				
S.001	sec.	0.01 to 9,999.99	A unit = 10ms	Max. counting = 9,999.99 secs.
S.01	sec.	0.1 to 99,999.9	A unit = 0.1 sec.	Max. counting = 99,999.9 secs.
S.1	sec.	1 to 999,999	A unit = 1 sec.	Max. counting = 999,999 secs.
M.001	min., sec.	0.01 to 9,959.99	A unit = 0.01 sec.	Max. counting = 5,999.99 secs.
M.01	min., sec.	0.1 to 99,959.9	A unit = 0.1 sec.	Max. counting = 59,999.9 secs.
M.1	min.	0.1 to 99,999.9	A unit = 0.1 min.	Max. counting = 99,999.9 mins.
H.001	hr., min., sec.	1 to 995,959	A unit = 1 sec.	Max. counting = 359,999 secs. (100 hrs.)
H.01	hr., min.	1 to 999,959	A unit = 1 min.	Max. counting = 35,999,999 secs. (10,000 hrs.)
H.1	hr.	1 to 699,999	A unit = 1 hr.	Max. counting = 699,999 hrs.